extrapolating to the value of the lattice parameter characteristic of the fully ordered material to find $R_{_{O}}$ at 25°C and 1 atmosphere. The temperature and pressure coefficient of resistance of a highly ordered sample are then measured and used to find $R_{_{O}}$ (T, P).

The procedure for measurement of the ordering rate is to first set up a quenched sample in the anvils and measure its resistance at room temperature and pressure. Then a pressure of a few hundred bars is applied and T raised to 100° C. At this temperature the sample is brought to the pressure to be used in the experiment; it is then rapidly heated and, when the temperature is stabilized, the resistance is measured as a function of time until the equilibrium resistance is attained. At the temperatures and pressures used, this may require a time between a few hours and a few days. During this anneal T is held to $\pm 0.5^{\circ}$ C and P to within ± 40 bars.

The resistance changes during a typical ordering experiment are shown in Fig. 6. To the data points shown, Eq. 1 must be fitted. In making this fit allowance must be made for possible errors in the determination of R_o and R_e . This was done by means of a computer program which compares Eq. 1 with the data for the following range of the variables R_o , R_e , and α :

$$\Delta R_{o} = 1.1 R_{o} \text{ to } 0.7 R_{o}$$
$$\Delta R_{e} = 1.0 R_{e} \text{ to } 0.9 R_{e}$$
$$\Delta \alpha = 3.0 \alpha \text{ to } 0.3 \alpha$$

- 13 -